Online stochastic optimization under time constraints

نویسندگان

  • Pascal Van Hentenryck
  • Russell Bent
  • Eli Upfal
چکیده

This paper considers online stochastic combinatorial optimization problems where uncertainties, i.e., which requests come and when, are characterized by distributions that can be sampled and where time constraints severely limit the number of offline optimizations which can be performed at decision time and/or in between decisions. It proposes online stochastic algorithms that combine the frameworks of online and stochastic optimization. Online stochastic algorithms differ from traditional a priori methods such as stochastic programming and Markov Decision Processes by focusing on the instance data that is revealed over time. The paper proposes three main algorithms: expectation E, consensus C, and regret R. They all make online decisions by approximating, for each decision, the solution to a multi-stage stochastic program using an exterior sampling method and a polynomial number of samples. The algorithms were evaluated experimentally and theoretically. The experimental results were obtained on three applications of different nature: packet scheduling, multiple vehicle routing with time windows, and multiple vehicle dispatching. The theoretical results show that, under assumptions which seem to hold on these, and other, applications, algorithm E has an expected constant loss compared to the offline optimal solution. Algorithm R reduces the number of optimizations by a factor |R|, where R is the number of requests, and has an expected ρ(1+o(1)) loss when the regret gives a ρ-approximation to the offline problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regrets Only! Online Stochastic Optimization under Time Constraints

This paper considers online stochastic optimization problems where time constraints severely limit the number of offline optimizations which can be performed at decision time and/or in between decisions. It proposes a novel approach which combines the salient features of the earlier approaches: the evaluation of every decision on all samples (expectation) and the ability to avoid distributing t...

متن کامل

Operating Room Scheduling in Teaching Hospitals: A Novel Stochastic Optimization Model

Background and Objectives: Operating room (OR) scheduling is key to optimal operating room productivity. The significant uncertainty associated with surgery duration renders scheduling of surgical operation a challenging task. This paper proposes a novel computational stochastic model to optimize scheduling of surgeries with uncertain durations. The model considers various surgical operation co...

متن کامل

Amsaa: A Multistep Anticipatory Algorithm for Online Stochastic Combinatorial Optimization

The one-step anticipatory algorithm (1s-AA) is an online algorithm making decisions under uncertainty by ignoring future non-anticipativity constraints. It makes near-optimal decisions on a variety of online stochastic combinatorial problems in dynamic fleet management, reservation systems, and more. Here we consider applications in which the 1s-AA is not as close to the optimum and propose Ams...

متن کامل

Online Decision Making under Stochastic Constraints

This paper proposes a novel algorithm for solving discrete online learning problems under stochastic constraints, where the leaner aims to maximize the cumulative reward given that some additional constraints on the sequence of decisions need to be satisfied on average. We propose Lagrangian exponentially weighted average (LEWA) algorithm, which is a primal-dual variant of the well known expone...

متن کامل

A multi-product vehicle routing scheduling model with time window constraints for cross docking system under uncertainty: A fuzzy possibilistic-stochastic programming

Mathematical modeling of supply chain operations has proven to be one of the most complex tasks in the field of operations management and operations research. Despite the abundance of several modeling proposals in the literature; for vast majority of them, no effective universal application is conceived. This issue renders the proposed mathematical models inapplicable due largely to the fact th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annals OR

دوره 177  شماره 

صفحات  -

تاریخ انتشار 2010